
A GENERAL FORMULAE

In this appendix A to the article Internal validation of temporal disaggregation: A cloud chamber

approach I outline the derivation of φ∗ as a function of m and ρ given the aggregation problem

described in the main text. First, I write (6) for general m and then show how S0 and S1 result.

The value of φ∗ then results by applying (9).

The starting point is the notion that any zh,t can be given as

zh,t = ρnzh,t−n + ρn−1ǫh,t−n+1 + ρn−2ǫh,t−n+2 + · · ·+ ǫh,t (A.1)

which implies for temporal aggregation over m periods,

zh,t + zh,t−1 + · · ·+ zh,t−m+1 = ρmzh,t−m + ρm−1ǫh,t−m+1 + ρm−2ǫh,t−m+2 + · · ·+ ǫh,t

+ ρmzh,t−m−1 + ρm−1ǫh,t−m + ρm−2ǫh,t−m+1 + · · ·+ ǫh,t−1

...

+ ρmzh,t−2m+1 + ρm−1ǫh,t−2m+2 + ρm−2ǫh,t−2m+3 + . . .

+ǫh,t−m+1

= ρm(zh,t + zh,t−1 + · · · + zh,t−m+1) + ul,τ .

zl,τ = ρmzl,τ−1 + ul,τ (A.2)

where the error term ul,τ is the sum of the elements of the (m×m) matrix Φτ :

Φτ =
[

ǫt ǫt−1 . . . ǫt−m+1

]

′

⊗
[

(ρL)m−1 (ρL)m−2 . . . (ρL)0
]

(A.3)

which makes use of the lag operator, L, with Lixt = xt−i. It is instructive to expand Φτ :

Φτ =



























ρm−1ǫh,t−m+1 ρm−2ǫh,t−m+2 ρm−3ǫh,t−m+3 · · · ρ0ǫh,t

ρm−1ǫh,t−m ρm−2ǫh,t−m+1 ρm−3ǫh,t−m+2 · · · ρ0ǫh,t−1

ρm−1ǫh,t−m−1 ρm−2ǫh,t−m ρm−3ǫh,t−m+1 · · · ρ0ǫh,t−2

...
...

...
. . .

...

ρm−1ǫh,t−2m+1 ρm−2ǫh,t−2m+2 ρm−3ǫh,t−2m+3 · · · ρ0ǫh,t−m+1



























(A.4)
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This matrix has an interesting structure. In particular, the innovations with identical time

subscripts are to be found along the diagonals. Thus, the variance of ul,τ is the sum of the

squared sums of the diagonal elements. At the same time the power to which ρ is raised is the

same in each column. Therefore, every secondary diagonal can be regarded a truncated version

of the main diagonal with respect to the power coefficients. The following auxiliary matrices

and operator are useful in finding handy expressions. Let me use the operator diag which stacks

the main diagonal of a symmetric matrix into a vector. Hence,

Ψ ≡ 1m×1

[

ρm−1 ρm−2 . . . ρ0
]

diag(Ψ) =
[

ρm−1ρm−2ρm−3 · · · ρ0
]

′

= ψ′

H ≡















1 1 · · · 1 1 0 · · · 0 0
0 1 · · · 1 1 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 1 1 · · · 0 0

0 0
. . . 1 1 1

. . . 1 0
0 0 · · · 0 1 1 · · · 1 1















where diag(Ψ) and H have dimensions (m × 1) and (m × 2m − 1) respectively, and 1m×1 is a

(m × 1) vector of ones. Notice that H is essentially a matrix of m rows of a m dimensional

column vector of ones within a (m × 2m− 1) matrix of zeros where in each successive row the

vector of ones is shifted one column to the right. The product ψH now conveniently collects the

2m − 1 sums of the diagonal elements of Φτ in a (1 × 2m − 1) vector omitting for the sake of

simplicity the innovation terms. The variance of ul,τ can now be obtained as

S0 ≡ ψHH ′ψ′

E(ul,τul,τ ) = σ2hS0

which makes use of the i.i.d. property of the ǫt.

For deriving S1, decompose H = (h1, 1m×1, h2) where h1 and h2 are (m ×m − 1) matrices

collecting the sums of the diagonal elements below and above the main diagonal respectively.
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Consider now Φτ−1 = LmΦτ whose sum of elements define ul,τ−1. The value of S1 is linear in

the covariance between ul,τ and ul,τ−1. Therefore, we need to multiply the sums of the elements

above the main diagonal of the matrix Φτ−1 with the sums of the elements below the main

diagonal of the matrix Φτ diagonal by diagonal. With the aid of h1 and h2 one can write

S1 = ψh1h
′

2ψ
′

E(ul,τul,τ−1) = σ2hS1.

The discussion of the identification issues easily generalises to the case for arbitrary m by

noting that again | S0
2S1

| >

√

S2
0

4S2
1
− 1 if ρ 6= 0 and that 1

2ρ
S0
S1
ρ

in general implies identical signs

for ρ and φ∗. Therefore, in the case of even m one might contemplate choosing the invertible

MA coefficient out of the two possible for identifying the disaggregate model. As argued before,

identification is ensured for uneven m.
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