A GENERAL FORMULAE

In this appendix A to the article Internal validation of temporal disaggregation: A cloud chamber approach I outline the derivation of ϕ^{*} as a function of m and ρ given the aggregation problem described in the main text. First, I write (6) for general m and then show how S_{0} and S_{1} result. The value of ϕ^{*} then results by applying (9).

The starting point is the notion that any $z_{h, t}$ can be given as

$$
\begin{equation*}
z_{h, t}=\rho^{n} z_{h, t-n}+\rho^{n-1} \epsilon_{h, t-n+1}+\rho^{n-2} \epsilon_{h, t-n+2}+\cdots+\epsilon_{h, t} \tag{A.1}
\end{equation*}
$$

which implies for temporal aggregation over m periods,

$$
\begin{aligned}
& z_{h, t}+z_{h, t-1}+\cdots+z_{h, t-m+1}= \rho^{m} z_{h, t-m}+\rho^{m-1} \epsilon_{h, t-m+1}+\rho^{m-2} \epsilon_{h, t-m+2}+\cdots+\epsilon_{h, t} \\
&+ \rho^{m} z_{h, t-m-1}+\rho^{m-1} \epsilon_{h, t-m}+\rho^{m-2} \epsilon_{h, t-m+1}+\cdots+\epsilon_{h, t-1} \\
& \vdots \\
&+ \rho^{m} z_{h, t-2 m+1}+\rho^{m-1} \epsilon_{h, t-2 m+2}+\rho^{m-2} \epsilon_{h, t-2 m+3}+\cdots \\
&+\epsilon_{h, t-m+1} \\
&= \rho^{m}\left(z_{h, t}+z_{h, t-1}+\cdots+z_{h, t-m+1}\right)+u_{l, \tau} .
\end{aligned}
$$

$$
\begin{equation*}
z_{l, \tau}=\rho^{m} z_{l, \tau-1}+u_{l, \tau} \tag{A.2}
\end{equation*}
$$

where the error term $u_{l, \tau}$ is the sum of the elements of the $(m \times m)$ matrix Φ_{τ} :

$$
\Phi_{\tau}=\left[\begin{array}{llll}
\epsilon_{t} & \epsilon_{t-1} & \ldots & \epsilon_{t-m+1} \tag{A.3}
\end{array}\right]^{\prime} \otimes\left[(\rho L)^{m-1}(\rho L)^{m-2} \ldots(\rho L)^{0}\right]
$$

which makes use of the lag operator, L, with $L^{i} x_{t}=x_{t-i}$. It is instructive to expand Φ_{τ} :

$$
\Phi_{\tau}=\left(\begin{array}{ccccc}
\rho^{m-1} \epsilon_{h, t-m+1} & \rho^{m-2} \epsilon_{h, t-m+2} & \rho^{m-3} \epsilon_{h, t-m+3} & \cdots & \rho^{0} \epsilon_{h, t} \tag{A.4}\\
\rho^{m-1} \epsilon_{h, t-m} & \rho^{m-2} \epsilon_{h, t-m+1} & \rho^{m-3} \epsilon_{h, t-m+2} & \cdots & \rho^{0} \epsilon_{h, t-1} \\
\rho^{m-1} \epsilon_{h, t-m-1} & \rho^{m-2} \epsilon_{h, t-m} & \rho^{m-3} \epsilon_{h, t-m+1} & \cdots & \rho^{0} \epsilon_{h, t-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\rho^{m-1} \epsilon_{h, t-2 m+1} & \rho^{m-2} \epsilon_{h, t-2 m+2} & \rho^{m-3} \epsilon_{h, t-2 m+3} & \cdots & \rho^{0} \epsilon_{h, t-m+1}
\end{array}\right)
$$

This matrix has an interesting structure. In particular, the innovations with identical time subscripts are to be found along the diagonals. Thus, the variance of $u_{l, \tau}$ is the sum of the squared sums of the diagonal elements. At the same time the power to which ρ is raised is the same in each column. Therefore, every secondary diagonal can be regarded a truncated version of the main diagonal with respect to the power coefficients. The following auxiliary matrices and operator are useful in finding handy expressions. Let me use the operator diag which stacks the main diagonal of a symmetric matrix into a vector. Hence,

$$
\begin{aligned}
\Psi & \equiv 1_{m \times 1}\left[\rho^{m-1} \rho^{m-2} \cdots \rho^{0}\right] \\
\operatorname{diag}(\Psi) & =\left[\rho^{m-1} \rho^{m-2} \rho^{m-3} \cdots \rho^{0}\right]^{\prime} \\
& =\psi^{\prime} \\
H & \equiv\left(\begin{array}{ccccccccc}
1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 1 & 1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & \cdots & 1 & 1 & 1 & \cdots & 0 & 0 \\
0 & 0 & \ddots & 1 & 1 & 1 & \ddots & 1 & 0 \\
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & 1
\end{array}\right)
\end{aligned}
$$

where $\operatorname{diag}(\Psi)$ and H have dimensions $(m \times 1)$ and $(m \times 2 m-1)$ respectively, and $1_{m \times 1}$ is a $(m \times 1)$ vector of ones. Notice that H is essentially a matrix of m rows of a m dimensional column vector of ones within a $(m \times 2 m-1)$ matrix of zeros where in each successive row the vector of ones is shifted one column to the right. The product ψH now conveniently collects the $2 m-1$ sums of the diagonal elements of Φ_{τ} in a $(1 \times 2 m-1)$ vector omitting for the sake of simplicity the innovation terms. The variance of $u_{l, \tau}$ can now be obtained as

$$
\begin{aligned}
S_{0} & \equiv \psi H H^{\prime} \psi^{\prime} \\
E\left(u_{l, \tau} u_{l, \tau}\right) & =\sigma_{h}^{2} S_{0}
\end{aligned}
$$

which makes use of the $i . i . d$. property of the ϵ_{t}.

For deriving S_{1}, decompose $H=\left(h_{1}, 1_{m \times 1}, h_{2}\right)$ where h_{1} and h_{2} are $(m \times m-1)$ matrices collecting the sums of the diagonal elements below and above the main diagonal respectively.

Consider now $\Phi_{\tau-1}=L^{m} \Phi_{\tau}$ whose sum of elements define $u_{l, \tau-1}$. The value of S_{1} is linear in the covariance between $u_{l, \tau}$ and $u_{l, \tau-1}$. Therefore, we need to multiply the sums of the elements above the main diagonal of the matrix $\Phi_{\tau-1}$ with the sums of the elements below the main diagonal of the matrix Φ_{τ} diagonal by diagonal. With the aid of h_{1} and h_{2} one can write

$$
\begin{aligned}
S_{1} & =\psi h_{1} h_{2}^{\prime} \psi^{\prime} \\
E\left(u_{l, \tau} u_{l, \tau-1}\right) & =\sigma_{h}^{2} S_{1} .
\end{aligned}
$$

The discussion of the identification issues easily generalises to the case for arbitrary m by noting that again $\left|\frac{S_{0}}{2 S_{1}}\right|>\sqrt{\frac{S_{0}^{2}}{4 S_{1}^{2}}-1}$ if $\rho \neq 0$ and that $\frac{1}{2 \rho} \frac{S_{0}}{S_{1}}$ in general implies identical signs for ρ and ϕ^{*}. Therefore, in the case of even m one might contemplate choosing the invertible MA coefficient out of the two possible for identifying the disaggregate model. As argued before, identification is ensured for uneven m.

