Growth Regressions, Principal Components Augmented Regressions and Frequentist Model Averaging

Martin Wagner and Jaroslava Hlouskova
Forthcoming in: Journal of Economics and Statistics
Program runs from main1.m. Input data are from Data.xls and some comments are in sheet Groups. Variables path_in (the path where input data Data.xls are stored) and path_out (the path where results will be stored) need to be adjusted. For running the code, the kernel density estimation toolbox will be necessary which can be downloaded from

http://intarch.ac.uk/journal/issue1/beardah/kdeia8.html

The main results are stored in the structures. The ordering of struct arrays corresponds to the ordering of groups as in the text object named names_groups which appears in the final mat file (or starting from the $3^{\text {rd }}$ line in the data file Data.xls); i.e., if we have a structure named s with arrays $s(1)$ and $s(2)$ and names_groups=\{Macro, Educations \}, then information in $s(1)$ corresponds to group Macro and in $s(2)$ to Education.

Below is the description of output structures and their fields:

ESTIM

coefFMAaic: $1 x\left(k_{11}+k_{2}+k_{12}\right)$ vector of estimated model average coefficients with S-AIC weighting scheme
coefFMAbic: $1 x\left(k_{11}+k_{2}+k_{12}\right)$ vector of estimated model average coefficients with S-BIC weighting scheme
coefFMAequal: $1 x\left(k_{11}+k_{2}+k_{12}\right)$ vector of estimated model average coefficients with equal weighting scheme
coefFMAmma: $1 \times\left(k_{11}+k_{2}+k_{12}\right)$ vector of estimated model average coefficients with MMA weighting scheme
coefOLSall: $2^{k l 2} x\left(k_{11}+k_{2}+k_{12}\right)$ matrix of estimated coefficients from all OLS regressions (coefficients of estimated factors are listed as well)
coefOLS: $2^{k 12} x\left(k_{11}+k_{12}\right)$ matrix of estimated coefficients from all OLS regressions (coefficients of estimated factors are not listed)
mean: $1 x\left(k_{11}+k_{12}\right)$ vector of means of coefficients corresponding to variables in X_{11} and X_{12}
kurt: $1 x\left(k_{11}+k_{12}\right)$ vector of kurtosis of coefficients corresponding to variables in X_{11} and X_{12}
skew: $1 x\left(k_{11}+k_{12}\right)$ vector of skewness of coefficients corresponding to variables in X_{11} and X_{12}
std: $1 \times\left(k_{11}+k_{12}\right)$ vector of standard deviations of coefficients corresponding to variables in X_{11} and X_{12}

INFERENCE

bounds_low: $\left(k_{11}+k_{2}+k_{12}\right) *(3+$ flag_MMA) x nsiglevel matrix of lower bounds of confidence interval (based on the 2 -stage confidence simulation procedure) for conservative coverage above $100 *\left(1\right.$-sig_level_FMA) sign. level. First $k_{11}+k_{2}+k_{12}$ rows correspond to lower bounds for model average coefficients with equal weighting scheme, second $k_{11}+k_{2}+k_{12}$ rows correspond to lower bounds for model average coefficients with S-AIC weighting scheme, third $k_{11}+k_{2}+k_{12}$ rows correspond to bounds for model average coefficients with B-AIC weighting scheme and forth $k_{11}+k_{2}+k_{12}$ rows correspond to lower bounds for model average coefficients with MMA weighting scheme. nsiglevel indicates the number of significance levels based on which is the inference performed. E.g., if we deal with 2 significance levels (nsiglevel=2) such that first is performed on 5% sig. level and the second on 10% sig. level, then first column corresponds to the lower bound based on 5\% sig. level and the second column corresponds to the lower bound based on 10% sig. level. Sig. levels for confidence intervals in FMA inference is given in sig_level_FMA.
bounds_up: $\left(k_{11}+k_{2}+k_{12}\right) *(3+$ flag_MMA) x nsiglevel matrix of upper bounds of confidence interval (based on the 2 -stage confidence simulation procedure) for conservative coverage above $100 *(1-$ sig_level_FMA $)$ sign. level. First $k_{11}+k_{2}+k_{12}$ rows correspond to upper bounds for model average coefficients with equal weighting scheme, second $k_{11}+k_{2}+k_{12}$ rows correspond to upper bounds for model average coefficients with S-AIC weighting scheme, third $k_{11}+k_{2}+k_{12}$ rows correspond to bounds for model average coefficients with B-AIC weighting scheme and forth $k_{11}+k_{2}+k_{12}$ rows correspond to upper bounds for model average coefficients with MMA weighting scheme. nsiglevel indicates the number of significance levels based on which is the inference performed. E.g., if we deal with 2 significance levels (nsiglevel=2) such that first is performed on 5% sig. level and the second on 10% sig. level, then first column corresponds to the upper bound based on 5% sig. level and the second column corresponds to the upper bound based on 10% sig. level. Sig. levels for confidence intervals in FMA inference is given in sig_level_FMA.
pvalFMA: $\left(k_{11}+k_{2}+k_{12}\right) \times(3+$ flag_MMA) matrix of p -values for estimated model average coefficients with equal, S-AIC, B-AIC weighting scheme and MMA weighting scheme (if flag_MMA $=0$).
pvalOLS: $2^{k 12} x\left(k_{11}+k_{2}+k_{12}\right)$ matrix of p -values of all coefficients and all OLS models.

OPTIM

exitflag: describes the exit condition of quadprog function (when calculating MMA weights); 1 - quadprog converged with a solution, 3 - change in objective function value smaller than the specified tolerance, 4-local minimizer found, 0 -maximum number of iterations exceeded, -2 - no feasible point found, -3 - problem is unbounded, -4 - current search direction is not a descent direction; no further progress can be made, -7 Magnitude of search
direction became too small; no further progress can be made. The problem is ill-posed or badly conditioned.

PCA

eigenval: $k_{21} x l$ vector of eigenvalues (for quantitative variables if $n g r o u p s_{-} P C A=2$) eigenvald: $k_{22} x 1$ vector of eigenvalues for dummy variables (if ngroups_PCA=2) eigenvec: $k_{21} x k_{2 l}$ matrix of eigenvectors (for quantitative variables if $n g r o u p s _P C A=2$) eigenvecd: $k_{22} x k_{22}$ matrix of eigenvectors for dummy variables (if ngroups_PCA=2)
explvar: $k_{21} x l$ vector of explained variance (cumulative eigenvalues) for quantitative variables (if $n g r o u p s _P C A=2$)
explvard: $k_{22} x l$ vector of explained variance (cumulative eigenvalues) for dummy variables (if ngroups_PCA=2)
$n f$: number of factors (if ngroups_PCA=2 then $n f$ is 1×2 vector where the $1^{\text {st }}$ element corresponds to the number of factors for quantitative variables and the $2^{\text {nd }}$ element corresponds to the number of factors for dummy variables)
pc: nobs $x k_{21}$ matrix of principal components (PC) (for quantitative variables (if groups_PCA=2))
$p c d$: nobs x_{22} matrix of principal components (PC) for dummy variables (if groups_PCA=2)

WEIGHTS

AIC: $2^{k l 2} x l$ vector of weights calculated based on the S-AIC weighting scheme BIC: $2^{k l 2} \times 1$ vector of weights calculated based on the S-BIC weighting scheme equal: $2^{k l 2} x 1$ vector of weights calculated based on the equal weighting scheme MMA: $2^{k l 2} x l$ vector of weights calculated based on the MMA weighting scheme incl_weights: $\left(3+\right.$ flag_MMA) $x k_{12}$ matrix of inclusion weights. Ordering of rows corresponds to weighting schemes as: $1^{\text {st }}$ row - equal, $2^{\text {nd }}$ row - S-AIC, $3^{\text {rd }}$ row - S-BIC and $4^{\text {th }}$ row MMA.
weights: $2^{k l 2} \times\left(3+f l a g _M M A\right)$ matrix of equal, AIC, BIC and MMA

