Growth Regressions, Principal Components Augmented Regressions and Frequentist Model Averaging

Martin Wagner and Jaroslava Hlouskova

Forthcoming in: Journal of Economics and Statistics

Program runs from **main1.m**. Input data are from **Data.xls** and some comments are in sheet **Groups**. Variables *path_in* (the path where input data Data.xls are stored) and *path_out* (the path where results will be stored) need to be adjusted. For running the code, the kernel density estimation toolbox will be necessary which can be downloaded from

http://intarch.ac.uk/journal/issue1/beardah/kdeia8.html

The main results are stored in the structures. The ordering of struct arrays corresponds to the ordering of groups as in the text object named *names_groups* which appears in the final mat file (or starting from the 3rd line in the data file Data.xls); i.e., if we have a structure named *s* with arrays s(1) and s(2) and *names_groups*={Macro, Educations}, then information in s(1) corresponds to group Macro and in s(2) to Education.

Below is the description of output structures and their fields:

ESTIM

coefFMAaic: $1 \times (k_{11}+k_2+k_{12})$ vector of estimated model average coefficients with S-AIC weighting scheme

coefFMAbic:1 x ($k_{11}+k_2+k_{12}$) vector of estimated model average coefficients with S-BIC weighting scheme

coefFMAequal: 1 x $(k_{11}+k_2+k_{12})$ vector of estimated model average coefficients with equal weighting scheme

coefFMAmma: $1 \times (k_{11}+k_2+k_{12})$ vector of estimated model average coefficients with MMA weighting scheme

coefOLSall: $2^{k_{12}} x (k_{11}+k_2+k_{12})$ matrix of estimated coefficients from all OLS regressions (coefficients of estimated factors are listed as well)

coefOLS: $2^{k12} x (k_{11}+k_{12})$ matrix of estimated coefficients from all OLS regressions (coefficients of estimated factors are not listed)

mean: $1 x (k_{11}+k_{12})$ vector of means of coefficients corresponding to variables in X₁₁ and X₁₂

kurt: 1 x ($k_{11}+k_{12}$) vector of kurtosis of coefficients corresponding to variables in X₁₁ and X₁₂

skew: $I \ge (k_{11}+k_{12})$ vector of skewness of coefficients corresponding to variables in X_{11} and X_{12}

std: *1* x ($k_{11}+k_{12}$) vector of standard deviations of coefficients corresponding to variables in X₁₁ and X₁₂

INFERENCE

bounds_low: $(k_{11}+k_2+k_{12})^*(3+flag_MMA)$ *x nsiglevel* matrix of lower bounds of confidence interval (based on the 2-stage confidence simulation procedure) for conservative coverage above 100*(1-sig_level_FMA) sign. level. First $k_{11}+k_2+k_{12}$ rows correspond to lower bounds for model average coefficients with equal weighting scheme, second $k_{11}+k_2+k_{12}$ rows correspond to lower bounds for model average coefficients with S-AIC weighting scheme, third $k_{11}+k_2+k_{12}$ rows correspond to bounds for model average coefficients with B-AIC weighting scheme and forth $k_{11}+k_2+k_{12}$ rows correspond to lower bounds for model average coefficients with MMA weighting scheme. *nsiglevel* indicates the number of significance levels based on which is the inference performed. E.g., if we deal with 2 significance levels (*nsiglevel=2*) such that first is performed on 5% sig. level and the second on 10% sig. level, then first column corresponds to the lower bound based on 5% sig. level and the second column corresponds to the lower bound based on 10% sig. level. Sig. levels for confidence intervals in FMA inference is given in *sig_level_FMA*.

bounds_up: $(k_{11}+k_2+k_{12})^*(3+flag_MMA)$ *x nsiglevel* matrix of upper bounds of confidence interval (based on the 2-stage confidence simulation procedure) for conservative coverage above 100*(1-sig_level_FMA) sign. level. First $k_{11}+k_2+k_{12}$ rows correspond to upper bounds for model average coefficients with equal weighting scheme, second $k_{11}+k_2+k_{12}$ rows correspond to upper bounds for model average coefficients with S-AIC weighting scheme, third $k_{11}+k_2+k_{12}$ rows correspond to bounds for model average coefficients with B-AIC weighting scheme and forth $k_{11}+k_2+k_{12}$ rows correspond to upper bounds for model average coefficients with MMA weighting scheme. *nsiglevel* indicates the number of significance levels based on which is the inference performed. E.g., if we deal with 2 significance levels (*nsiglevel=*2) such that first is performed on 5% sig. level and the second on 10% sig. level, then first column corresponds to the upper bound based on 5% sig. level and the second column corresponds to the upper bound based on 10% sig. levels for confidence intervals in FMA inference is given in *sig_level_FMA*.

pvalFMA: $(k_{11}+k_2+k_{12}) \times (3+flag_MMA)$ matrix of p-values for estimated model average coefficients with equal, S-AIC, B-AIC weighting scheme and MMA weighting scheme (if $flag_MMA=0$).

pvalOLS: $2^{k12} x (k_{11}+k_2+k_{12})$ matrix of p-values of all coefficients and all OLS models.

OPTIM

exitflag: describes the exit condition of quadprog function (when calculating MMA weights); 1 - quadprog converged with a solution, 3 - change in objective function value smaller than the specified tolerance, 4 - local minimizer found, 0 - maximum number of iterations exceeded, -2 - no feasible point found, -3 - problem is unbounded, -4 - current search direction is not a descent direction; no further progress can be made, -7 Magnitude of search direction became too small; no further progress can be made. The problem is ill-posed or badly conditioned.

PCA

eigenval: k₂₁ x 1 vector of eigenvalues (for quantitative variables if ngroups_PCA=2)

eigenvald: k₂₂ x 1 vector of eigenvalues for dummy variables (if ngroups_PCA=2)

eigenvec: $k_{21} x k_{21}$ matrix of eigenvectors (for quantitative variables if *ngroups_PCA=2*)

eigenvecd: *k*₂₂ *x k*₂₂ matrix of eigenvectors for dummy variables (if *ngroups_PCA=2*)

explvar: $k_{21} \times l$ vector of explained variance (cumulative eigenvalues) for quantitative variables (if *ngroups_PCA=2*)

explvard: $k_{22} \times l$ vector of explained variance (cumulative eigenvalues) for dummy variables (if *ngroups_PCA=2*)

nf: number of factors (if *ngroups_PCA*=2 then *nf* is 1 x 2 vector where the 1^{st} element corresponds to the number of factors for quantitative variables and the 2^{nd} element corresponds to the number of factors for dummy variables)

pc: *nobs* $x k_{21}$ matrix of principal components (PC) (for quantitative variables (if *groups_PCA=2*))

pcd: nobs x k₂₂ matrix of principal components (PC) for dummy variables (if groups_PCA=2)

WEIGHTS

AIC: $2^{k12} \times 1$ vector of weights calculated based on the S-AIC weighting scheme

BIC: $2^{k12} \times 1$ vector of weights calculated based on the S-BIC weighting scheme

equal: $2^{kl2} \times 1$ vector of weights calculated based on the equal weighting scheme

MMA: $2^{kl2} x l$ vector of weights calculated based on the MMA weighting scheme

incl_weights: $(3+flag_MMA) x k_{12}$ matrix of inclusion weights. Ordering of rows corresponds to weighting schemes as: 1st row - equal, 2nd row - S-AIC, 3rd row - S-BIC and 4th row - MMA.

weights: 2^{k12} x (3+flag_MMA) matrix of equal, AIC, BIC and MMA